Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Lab Chip ; 24(3): 467-479, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38126917

RESUMEN

Multiple protocols have been reported to fabricate paper-based analytical devices (PADs). However, some of these techniques must be revised because of the instrumentation required. This paper describes a versatile and globally affordable method to fabricate PADs using office paper as a substrate and a laser printing technique to define hydrophobic barriers on paper surfaces. To demonstrate the feasibility of the alternatives proposed in this study, the fabrication of devices for three types of detection commonly associated with using PADs was demonstrated: colorimetric detection, electrochemical detection, and mass spectrometry associated with a paper-spray ionization (PSI-MS) technique. Besides that, an evaluation of the type of paper used and chemical modifications required on the substrate surface are also presented in this report. Overall, the developed protocol was suitable for using office paper as a substrate, and the laser printing technique as an efficient fabrication method when using this substrate is accessible at a resource-limited point-of-need. Target analytes were used as a proof of concept for these detection techniques. Colorimetric detection was carried out for acetaminophen, iron, nitrate, and nitrite with limits of detection of 0.04 µg, 4.5 mg mL-1, 2.7 µmol L-1, and 6.8 µmol L-1, respectively. A limit of detection of 0.048 fg mL-1 was obtained for the electrochemical analysis of prostate-specific antigen. Colorimetric and electrochemical devices revealed satisfactory performance when office paper with a grammage of 90 g m-2 was employed. Methyldopa analysis was also carried out using PSI-MS, which showed a good response in the same paper weight and behavior compared to chromatographic paper.

2.
Talanta ; 256: 124277, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738622

RESUMEN

Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL-1 (r2 = 0.982), with a limit of detection of 0.48 pg mL-1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.


Asunto(s)
Culicidae , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infección por el Virus Zika/diagnóstico , Inmunoensayo , Anticuerpos Antivirales
3.
Talanta, v. 256, 124277, jan. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4792

RESUMEN

Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL−1 (r2 = 0.982), with a limit of detection of 0.48 pg mL−1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.

4.
Sens Actuators B Chem ; 353: 131128, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34866796

RESUMEN

The outbreak of the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome of Coronavirus 2 (SARS-CoV-2), has fueled the search for diagnostic tests aiming at the control and reduction of the viral transmission. The main technique used for diagnosing the Coronavirus disease (COVID-19) is the reverse transcription-polymerase chain reaction (RT-PCR) technique. However, considering the high number of cases and the underlying limitations of the RT-PCR technique, especially with regard to accessibility and cost of the test, one does not need to overemphasize the need to develop new and less expensive testing techniques that can aid the early diagnosis of the disease. With that in mind, we developed an ultrasensitive magneto-assay using magnetic beads and gold nanoparticles conjugated to human angiotensin-converting enzyme 2 (ACE2) peptide (Gln24-Gln42) for the capturing and detection of SARS-CoV-2 Spike protein in human saliva. The technique applied involved the use of a disposable electrochemical device containing eight screen-printed carbon electrodes which allow the simultaneous analysis of eight samples. The magneto-assay exhibited an ultralow limit of detection of 0.35 ag mL-1 for the detection of SARS-CoV-2 Spike protein in saliva. The magneto-assay was tested in saliva samples from healthy and SARS-CoV-2-infected individuals. In terms of efficiency, the proposed technique - which presented a sensitivity of 100.0% and specificity of 93.7% for SARS-CoV-2 Spike protein-exhibited great similarity with the RT-PCR technique. The results obtained point to the application potential of this simple, low-cost magneto-assay for saliva-based point-of-care COVID-19 diagnosis.

5.
Biomed Pharmacother ; 145: 112426, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34861633

RESUMEN

Glutathione-s-transferase is believed to be involved in the resistance to chemotherapeutic drugs, which depends on the interaction with the cell membranes. In this study, we employed Langmuir monolayers of a mixture of phospholipids and cholesterol (MIX) as models for tumor cell membranes and investigated their interaction with the anticancer drugs cisplatin (CDDP) and doxorubicin (DOX). We found that both DOX and CDDP expand and affect the elasticity of MIX monolayers, but these effects are hindered when glutathione-s-transferase (GST) and its cofactor glutathione (GSH) are incorporated. Changes are induced by DOX or CDDP on the polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) data for MIX/GST/GSH monolayers, thus denoting some degree of interaction that is not sufficient to alter the monolayer mechanical properties. Overall, the results presented here give support to the hypothesis of the inactivation of DOX and CDDP by GST and point to possible directions to detect and fight drug resistance.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Doxorrubicina/farmacología , Glutatión Transferasa/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Resistencia a Antineoplásicos/fisiología , Modelos Biológicos , Fosfolípidos/metabolismo
6.
Anal Chem ; 93(2): 1059-1067, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33289381

RESUMEN

The inability to distinguish aggressive from indolent prostate cancer is a longstanding clinical problem. Prostate specific antigen (PSA) tests and digital rectal exams cannot differentiate these forms. Because only ∼10% of diagnosed prostate cancer cases are aggressive, existing practice often results in overtreatment including unnecessary surgeries that degrade patients' quality of life. Here, we describe a fast microfluidic immunoarray optimized to determine 8-proteins simultaneously in 5 µL of blood serum for prostate cancer diagnostics. Using polymeric horseradish peroxidase (poly-HRP, 400 HRPs) labels to provide large signal amplification and limits of detection in the sub-fg mL-1 range, a protocol was devised for the optimization of the fast, accurate assays of 100-fold diluted serum samples. Analysis of 130 prostate cancer patient serum samples revealed that some members of the protein panel can distinguish aggressive from indolent cancers. Logistic regression was used to identify a subset of the panel, combining biomarker proteins ETS-related gene protein (ERG), insulin-like growth factor-1 (IGF-1), pigment epithelial-derived factor (PEDF), and serum monocyte differentiation antigen (CD-14) to predict whether a given patient should be referred for biopsy, which gave a much better predictive accuracy than PSA alone. This represents the first prostate cancer blood test that can predict which patients will have a high biopsy Gleason score, a standard pathology score used to grade tumors.


Asunto(s)
Biomarcadores de Tumor/sangre , Inmunoensayo , Técnicas Analíticas Microfluídicas , Proteínas de Neoplasias/sangre , Neoplasias de la Próstata/diagnóstico , Humanos , Masculino , Neoplasias de la Próstata/sangre
7.
Colloids Surf B Biointerfaces ; 196: 111357, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32992284

RESUMEN

The fight against drug resistance in chemotherapy requires a molecular-level understanding of the drug interaction with cell membranes, which today is feasible with membrane models. In this study, we report on the interaction of gemcitabine (GEM), a pyrimidine nucleoside antimetabolite used to treat pancreatic cancer, with Langmuir films that mimic healthy and cancerous cell membranes. The cell membrane models were made with eight compositions of a quaternary mixture containing 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS), sphingomyelin (SM), and cholesterol (CHOL). The relative concentration of SM was increased so that four of these compositions represented cancerous cells. GEM was found to increase the mean molecular area, also increasing their surface elasticity, with stronger interactions being observed for membranes corresponding to cancerous cells. More specifically, GEM penetrated deepest in the membrane with the highest SM concentration (40 mol%), as inferred from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). This finding was confirmed with molecular dynamics simulations that also indicated how GEM approaches the membrane, which could be useful for guiding the design of drug delivery systems. The experimental and simulation results are consistent with the preferential attachment of GEM onto cancerous cells and highlight the role of SM on drug-cell interactions.


Asunto(s)
Antineoplásicos , Esfingomielinas , Membrana Celular , Desoxicitidina/análogos & derivados , Glicerol/análogos & derivados , Fosforilcolina/análogos & derivados , Gemcitabina
8.
ACS Sens ; 5(7): 1864-1871, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32597643

RESUMEN

Extracellular vesicles (EVs) are a frontier class of circulating biomarkers for the diagnosis and prognosis of different diseases. These lipid structures afford various biomarkers such as the concentrations of the EVs (CV) themselves and carried proteins (CP). However, simple, high-throughput, and accurate determination of these targets remains a key challenge. Herein, we address the simultaneous monitoring of CV and CP from a single impedance spectrum without using recognizing elements by combining a multidimensional sensor and machine learning models. This multidetermination is essential for diagnostic accuracy because of the heterogeneous composition of EVs and their molecular cargoes both within the tumor itself and among patients. Pencil HB cores acting as electric double-layer capacitors were integrated into a scalable microfluidic device, whereas supervised models provided accurate predictions, even from a small number of training samples. User-friendly measurements were performed with sample-to-answer data processing on a smartphone. This new platform further showed the highest throughput when compared with the techniques described in the literature to quantify EVs biomarkers. Our results shed light on a method with the ability to determine multiple EVs biomarkers in a simple and fast way, providing a promising platform to translate biofluid-based diagnostics into clinical workflows.


Asunto(s)
Vesículas Extracelulares , Dispositivos Laboratorio en un Chip , Aprendizaje Automático , Neoplasias , Biomarcadores , Humanos
9.
ACS Sens ; 5(4): 1010-1019, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32207606

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative condition that affects a large number of elderly people worldwide and has a high social and economic impact. The diagnosis of AD in early stage can significantly improve the evolution and prognosis of the disease. We report the use of A Disintegrin And Metalloprotease 10 (ADAM10) as a blood biomarker for the early diagnosis of AD. A simple, low-cost, sensitive, and disposable microfluidic platform (DµP) was developed for ADAM10 detection in plasma and cerebrospinal fluid based on electrochemical immunosensors. The assay was designed to accurately detect ADAM10 in serum, with a limit of detection of 0.35 fg/mL. ADAM10 was detected in subjects divided into cognitively healthy subjects, subjects with mild cognitive impairment, and AD patients in different disease stages. An increase in protein levels was found throughout the disease, and good DµP accuracy in differentiating individuals was observed. The DµP provided significantly better sensitivity than the well-established enzyme-linked immunosorbent assay test. ADAM10 and its detection using the DµP were proven to be an alternative tool for the early diagnosis and monitoring of AD, bringing new exciting possibilities to improve the quality of life of AD patients.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Microfluídica/métodos , Diagnóstico Precoz , Humanos
10.
Beilstein J Nanotechnol ; 10: 2171-2181, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31807403

RESUMEN

Diagnosis of cancer using electroanalytical methods can be achieved at low cost and in rapid assays, but this may require the combination with data treatment for determining biomarkers in real samples. In this paper, we report an immunomagnetic nanoparticle-based microfluidic sensor (INµ-SPCE) for the amperometric detection of the prostate-specific antigen (PSA) biomarker, the data of which were treated with information visualization methods. The INµ-SPCE consists of eight working electrodes, reference and counter electrodes. On the working electrodes, magnetic nanoparticles with secondary antibodies with the enzyme horseradish peroxidase were immobilized for the indirect detection of PSA in a sandwich-type procedure. Under optimal conditions, the immunosensor could operate within a wide range from 12.5 to 1111 fg·L-1, with a low detection limit of 0.062 fg·L-1. Multidimensional projections combined with feature selection allowed for the distinction of cell lysates with different levels of PSA, in agreement with results from the traditional enzyme-linked immunosorbent assay. The approaches for immunoassays and data processing are generic, and therefore the strategies described here may provide a simple platform for clinical diagnosis of cancers and other types of diseases.

11.
Talanta ; 205: 120110, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31450419

RESUMEN

Tristeza is a disease that affects citrus crops in general, caused by the Citrus tristeza virus (CTV). It is considered an economically important virus diseases in citrus, which is present in the main citrus producing regions all around the world. Early detection of CTV is crucial to avoid any epidemics and substantial economic losses for the citrus growers. Consequently, the development of rapid, accurate, and sensitive methods capable of detecting the virus in the early stages of the disease is highly desired. Based on that, a low-cost and rapid magneto-immunoassay methodology to detect the capsid protein from CTV (CP-CTV) was proposed. For this, magnetic beads were decorated with antibodies anti-CP-CTV and horseradish peroxidase enzyme (HRP) and applied for the capture and separation of CP-CTV from the sample solutions. The magnetically captured biomarker was detected using a simple disposable microfluidic electrochemical device (DµFED) constructed by rapid prototyping technique and composed by an array of immunosensors. In DµFED, the electrodes were modified with monoclonal antibody anti-CP-CTV and the detection was carried out using amperometry, based on the hydroquinone/H2O2 catalytic redox reaction due to the presence of HRP label in an immune-sandwich structure. The proposed immunoassay presented excellent linearity with a wide linear range of concentration of 1.95-10.0 × 103 fg mL-1 and ultralow detection limit of 0.3 fg mL-1. The disposable device was successfully applied for the detection of Citrus tristeza virus in healthy and infected plant samples, where it showed good agreements with the comparative method of enzyme-linked immunosorbent assay (ELISA). The developed immunoassay methodology showed a sensitive and selective way in the detection of CTV. Hence, it can be considered as a promising analytical alternative for rapid and low-cost diagnosis of Tristeza disease in citrus.


Asunto(s)
Closterovirus/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Animales , Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales de Origen Murino/inmunología , Proteínas de la Cápside/análisis , Proteínas de la Cápside/inmunología , Citrus/virología , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Oro/química , Inmunoensayo/métodos , Separación Inmunomagnética/métodos , Límite de Detección , Nanopartículas del Metal/química , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Reproducibilidad de los Resultados
12.
Anal Chim Acta ; 1071: 59-69, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31128756

RESUMEN

Early diagnosis of cancer by biomarker detection has been widely studied since it can lead to an increase in patient survival rates. Magnetic nanoparticles (MNPs) play an important role in this field acting as a valuable tool in the biomarker immunocapture and detection. In this work, Co0.25Zn0.75Fe2O4 (CoZnFeONPs) nanoparticles were synthesized and applied as enzyme mimics of peroxidase-like catalysis in a disposable enzyme-free microfluidic immunoarray device (µID). The catalytic activity of CoZnFeONPs was evaluated by hydrogen peroxide detection using cyclic voltammetry and the apparent Michaelis-Menten constant was estimated by Lineweaver-Burk equation showing good Km values. In µID, the immunosensors were assembled with monoclonal antibody against CYFRA 21-1 covalently immobilized on graphene oxide previously deposited on the screen-printed carbon-based electrodes. Under optimized conditions, the method presented a good linear response for CYFRA 21-1 in the range of 3.9-1000 fg mL-1 achieving an ultralow limit of detection (LOD) of 0.19 fg mL-1. For comparison, Fe3O4 nanoparticles (FeONPs) was also synthetized and presented results slight inferior to that obtained with CoZnFeONPs. The methods developed using both MNPs exhibited countless advantages when compared with the immunosensors developed for CYFRA-21-1, previously reported in the literature. The methods were successful applied for the detection of CYFRA 21-1 in real serum samples of healthy and prostate cancer patients and showed good correlation with results obtained with the enzyme-linked immunosorbent assay (ELISA). The CoZnFeONPs associated with the disposable microfluidic immunoarray device provides a simple and effective method for biomarker detection that could satisfy the need for a low-cost and rapid test for early diagnosis of cancer.


Asunto(s)
Antígenos de Neoplasias/sangre , Biomarcadores de Tumor/sangre , Queratina-19/sangre , Dispositivos Laboratorio en un Chip , Nanopartículas del Metal/química , Técnicas Analíticas Microfluídicas/métodos , Anticuerpos/inmunología , Antígenos de Neoplasias/inmunología , Biomarcadores de Tumor/inmunología , Cobalto/química , Electrodos , Grafito/química , Humanos , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Hierro/química , Queratina-19/inmunología , Límite de Detección , Masculino , Técnicas Analíticas Microfluídicas/instrumentación , Neoplasias de la Próstata/sangre , Reproducibilidad de los Resultados , Zinc/química
14.
Anal Bioanal Chem ; 411(10): 2111-2119, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30739194

RESUMEN

The evaluation of interaction between small molecules and protein is an important step in the discovery of new drugs and to study complex biological systems. In this work, an alternative method was presented to evaluate small-molecule-protein interaction by using ligand capture by protein-coated magnetic particles (MPs) and disposable electrochemical cells. The interaction study was conducted using [10]-gingerol from ginger rhizome and a transmembrane protein αVß3 integrin. Initially, the electrochemical behavior of the natural compound [10]-gingerol was evaluated with the disposable carbon-based electrodes and presented an irreversible oxidation process controlled by diffusion. The analytical curve for [10]-gingerol was obtained in the range of 1.0 to 20.0 µmol L-1, with limit of detection of 0.26 µmol L-1. Then MPs coated with αVß3 integrin were incubated with standard solutions and extracts of ginger rhizome for [10]-gingerol capture and separation. The bioconjugate obtained was dropped to the disposable electrochemical cells, keeping a permanent magnet behind the working electrode, and the binding process was evaluated by the electrochemical detection of [10]-gingerol. The assay method proposed was also employed to calculate the [10]-gingerol-αVß3 integrin association constant, which was calculated as 4.3 × 107 M-1. The method proposed proved to be a good label-free alternative to ligand-protein interaction studies. Graphical abstract ᅟ.


Asunto(s)
Catecoles/farmacología , Descubrimiento de Drogas/métodos , Técnicas Electroquímicas/métodos , Alcoholes Grasos/farmacología , Proteínas Inmovilizadas/metabolismo , Integrina alfaVbeta3/metabolismo , Imanes/química , Catecoles/metabolismo , Alcoholes Grasos/metabolismo , Humanos , Unión Proteica
15.
Talanta ; 194: 611-618, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609580

RESUMEN

Outbreaks of foodborne diseases demand simple, rapid techniques for detecting pathogenic bacteria beyond the standard methods that are not applicable to routine analysis in the food industry and in the points of food consumption. In this work, we developed a sensitive, rapid and low-cost assay for detecting Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Salmonella typhimurium (S. typhi) in potable water and apple juice. The assay is based on electrical impedance spectroscopy measurements with screen-printed interdigitated electrodes coupled with magnetite nanoparticles functionalized with the antimicrobial peptide melittin (MLT). The data were analyzed with the information visualization methods Sammon's Mapping and Interactive Document Map to distinguish samples at two levels of contamination from food suitable for consumption. With this approach it has been possible to detect E. coli concentration down to 1 CFU mL-1 in potable water and 3.5 CFU mL-1 in apple juice without sample preparation, within only 25 min. This approach may serve as a low-cost, quick screening procedure to detect bacteria-related food poisoning, especially if the impedance data of several sensing units are combined.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Bacterias/aislamiento & purificación , Técnicas Biosensibles/métodos , Microbiología de Alimentos , Nanopartículas de Magnetita/química , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Técnicas Biosensibles/economía , Costos y Análisis de Costo , Espectroscopía Dieléctrica , Capacidad Eléctrica , Electrodos , Factores de Tiempo
16.
Talanta ; 195: 62-68, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625593

RESUMEN

A new disposable microfluidic electrochemical paper-based device (ePAD) consisting of two spot sensors in the same working electrode for the simultaneous determination of uric acid and creatinine was developed. The spot 1 surface was modified with graphene quantum dots for direct uric acid oxidation and spot 2 surface modified with graphene quantum dots, creatininase and a ruthenium electrochemical mediator for creatinine oxidation. The ePAD was employed to construct an electrochemical sensor (based on square wave voltammetry analysis) for the simultaneous determination of uric acid and creatinine in the 0.010-3.0 µmol L-1 range. The device showed excellent analytical performance with a very low simultaneous detection limit of 8.4 nmol L-1 to uric acid and 3.7 nmol L-1 to creatinine and high selectivity. The ePAD was applied to the rapid and successful determination of those clinical biomarkers in human urine samples.


Asunto(s)
Creatinina/orina , Técnicas Electroquímicas/instrumentación , Dispositivos Laboratorio en un Chip , Ácido Úrico/orina , Biomarcadores/química , Biomarcadores/orina , Creatinina/química , Electrodos , Grafito/química , Humanos , Oxidación-Reducción , Papel , Puntos Cuánticos/química , Rutenio/química , Ureohidrolasas/química , Ácido Úrico/química
17.
Anal Chem ; 90(21): 12377-12384, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30222327

RESUMEN

This technical note describes a new microfluidic sensor that combines low-cost (USD $0.97) with rapid fabrication and user-friendly, fast, sensitive, and accurate quantification of a breast cancer biomarker. The electrodes consisted of cost-effective bare stainless-steel capillaries, whose mass production is already well-established. These capillaries were used as received, without any surface modification. Microfluidic chips containing electrical double-layer capillary capacitors (µEDLC) were obtained by a cleanroom-free prototyping that allows the fabrication of dozens to hundreds of chips in 1 h. This sensor provided the successful quantification of CA 15-3, a biomarker protein for breast cancer, in serum samples from cancer patients. Antibody-anchored magnetic beads were utilized for immunocapture of the marker, and then, water was added to dilute the protein. Next, the CA 15-3 detection (<2 min) was made without using redox probes, antibody on electrode (sandwich immunoassay), or signal amplification strategies. In addition, the capacitance tests eliminated external pumping systems and precise volumetric sampling steps, as well as presented low sample volume (5 µL) and high sensitivity using bare capillaries in a new design for double-layer capacitors. The achieved limit-of-detection (92.0 µU mL-1) is lower than that of most methods reported in the literature for CA 15-3, which are based on nanostructured electrodes. The data shown in this technical note support the potential of the µEDLC toward breast cancer diagnosis even at early stages. We believe that accurate analyses using a simple sample pretreatment such as magnetic field-assisted immunocapture and cost-effective bare electrodes can be extended to quantify other cancer biomarkers and even biomolecules by changing the biorecognition element.


Asunto(s)
Biomarcadores de Tumor/análisis , Técnicas Biosensibles/economía , Neoplasias de la Mama/diagnóstico por imagen , Técnicas Electroquímicas/economía , Técnicas Analíticas Microfluídicas/economía , Mucina-1/análisis , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Electrodos , Femenino , Humanos , Técnicas Analíticas Microfluídicas/instrumentación
18.
Biosens Bioelectron ; 99: 156-162, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28755608

RESUMEN

A novel fully disposable microfluidic electrochemical array device (µFED) was developed and successfully applied for detection of the biomarker estrogen receptor alpha (ERα). The µFED was constructed using low-cost materials and an inexpensive home cutter printer enabled the manufacture of dozens of µFEDs in less than 2h, at a cost of less than US$ 0.20 in material per device. The µFED incorporates counter and reference electrodes and eight carbon-based working electrodes, which were modified with DNA sequences known as estrogen response elements (DNA-ERE), where ERα binds specifically. Paramagnetic particles heavily decorated with anti-ERα antibody and horseradish peroxidase (MP-Ab-HRP) were used to efficiently capture ERα from the sample solution. The ERα-MP-Ab-HRP bioconjugate formed was injected into the µFED and incubated with the DNA-ERE-modified electrodes, followed by amperometric detection with application of -0.2V vs. Ag|AgCl while a mixture of H2O2 and hydroquinone was injected into the microfluidic device. An ultralow limit of detection of 10.0 fg mL-1 was obtained with the proposed method. The performance of the assay, in terms of sensitivity and reproducibility, was studied using undiluted calf serum, and excellent recoveries in the range of 94.7-108% were achieved for the detection of ERα in MCF-7 cell lysate. The µFED system can be easily constructed and applied for multiplex biomarker detection, making the device an excellent cost-effective alternative for cancer diagnosis, especially in developing countries.


Asunto(s)
Biomarcadores de Tumor/genética , Técnicas Biosensibles , Neoplasias de la Mama/diagnóstico , Receptor alfa de Estrógeno/aislamiento & purificación , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Humanos , Límite de Detección , Células MCF-7
19.
ACS Appl Mater Interfaces ; 9(33): 27433-27440, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28742317

RESUMEN

Breast cancer is the most common cancer in women worldwide. The detection of biomarkers has played a significant role in the early diagnosis and prognosis of breast cancer. Herein, we describe the construction of a disposable microfluidic immunoarray device (DµID) for the rapid and low-cost detection of CA15-3 (carbohydrate antigen 15-3), a protein biomarker for breast cancer. The DµID was constructed using a simple and rapid prototyping technique and was applied to detect CA15-3 in cancer patients. The DµID construction was based on the use of a double-sided adhesive card with a microfluidic channel and a screen-printed array with 8 electrodes. Both the immunoarray and microfluidic channel were designed using an inexpensive home cutter printer and using low-cost materials. The immunoarray was modified using the layer-by-layer technique aiming at immobilizing the primary antibody. For the biomarker detection, magnetic particles (MPs) modified with polyclonal antibodies and peroxidase enzymes were used as a strategy for capture, separation, and preconcentration of the biomarker, in addition to amplification of the electroanalytical signal. The preconcentration and amplification strategies integrated with the nanostructured immunosensors of the DµID meaningfully contributed toward the detection of CA15-3 with a limit of detection (LoD) of 6 µU mL-1, requiring as low as 2 µL of serum samples for 8 simultaneous detections. The obtained LoD was 1200 times lower compared to those of other immunosensors previously reported in the literature. The DµID was applied for the detection of CA15-3 in real samples of breast cancer patients and was found to present an excellent correlation with the well-established commercial electrochemiluminescence immunoassay. The association of the DµID with nanostructured surfaces and analyte capturing with bioconjugated paramagnetic particles is essentially a promising breakthrough for the low-cost and accurate detection of cancer biomarkers.


Asunto(s)
Microfluídica , Biomarcadores de Tumor , Técnicas Biosensibles , Humanos , Inmunoensayo , Dispositivos Laboratorio en un Chip , Límite de Detección
20.
Talanta ; 146: 381-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26695279

RESUMEN

This work describes the construction of an all-plastic disposable carbon-based electrochemical cell (DCell) using a simple procedure based on the use of a home cutter printer for prototyping and laminating. The cutter printer and adhesive vinyl films were used to produce three electrodes in an electrochemical cell layout, and a laminating process was then used to define the geometric area and insulate the electrodes. The DCell showed excellent performance in several applications including the determination of toxic metals in water samples, the immobilization of DNA and the detection of Salmonella. An unmodified DCell was applied for Pb and Cd detection in the range of 100-300 ng mL(-1) with a limit of detection of 50 and 39 ng mL(-1) for Cd and Pb, respectively. DNA was successfully immobilized on a DCell and used for studies of interaction between bisphenol A and DNA. The square wave voltammetry of a DNA modified DCell presented a guanine oxidation current 2.5 times greater after exposure of the electrode to bisphenol A and no current variation for the adenine moiety indicating that bisphenol A showed a preference for DNA interaction sites. A magneto-immunoassay was developed using a DCell for Salmonella detection in milk samples. The system presented a linear range from 100 to 700 cells mL(-1) with a limit of detection of 100 cells mL(-1) and good recovery values between 93% and 101% in milk samples, with no interference from Escherichia coli. Using the proposed method, hundreds of DCells can be assembled in less than two hours, at a material cost of less than US $0.02 per cell. The all-plastic disposable electrochemical cell developed was successfully applied as an electrochemical sensor and biosensor. The feasibility of the developed all-plastic disposable electrochemical cell was demonstrated in applications as both sensor and biosensor.


Asunto(s)
Técnicas Biosensibles/instrumentación , Carbono/química , Equipos Desechables , Equipos y Suministros Eléctricos , Compuestos de Bencidrilo/química , Cadmio/análisis , Cadmio/química , ADN/química , Electroquímica , Diseño de Equipo , Plomo/análisis , Plomo/química , Fenoles/química , Salmonella/aislamiento & purificación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...